Skip to main content

The Values of Riemann Zeta Function for Positive Even Integers in Odd Form

For any positive integer n [1], the sum in odd form related to the Riemann zeta function is expressed as follows:

.

The first 15 values in closed-form of the sum involving the reciprocals of odd integers raised to even powers are:

1.  1 + 1 ⁄ 32 + 1 ⁄ 52 + 1 ⁄ 72 + ...  =  π2 ⁄ 8.

 

2.  1 + 1 ⁄ 34 + 1 ⁄ 54 + 1 ⁄ 74 + ...  =  π4 ⁄ 96.

 

3.  1 + 1 ⁄ 36 + 1 ⁄ 56 + 1 ⁄ 76 + ... =  π6 ⁄ 960.

 

4.  1 + 1 ⁄ 38 + 1 ⁄ 58 + 1 ⁄ 78  + ... =  17π8 ⁄ 161280.

 

5.  1 + 1 ⁄ 310 + 1 ⁄ 510 + 1 ⁄ 710  + ... =  31 π10 ⁄ 2903040.

 

6.  1 + 1 ⁄ 312 + 1 ⁄ 512 + 1 ⁄ 712  + ... =  691 π12 ⁄ 638668800.

 

7.  1 + 1 ⁄ 314 + 1 ⁄ 514 + 1 ⁄ 714 + ... =  5461 π14 ⁄ 49816166400.

 

8.  1 + 1 ⁄ 316 + 1 ⁄ 516 + 1 ⁄ 716  + ... =  929569 π16 ⁄ 83691159552000.

 

9.  1 + 1 ⁄ 318 + 1 ⁄ 518 + 1 ⁄ 718  + ... =  3202291 π18 ⁄ 2845499424768000.

 

10.  1 + 1 ⁄ 320 + 1 ⁄ 520 + 1 ⁄ 720  + ... = 221930581 π20 ⁄ 1946321606541312000.

 

11.  1 + 1 ⁄ 322 + 1 ⁄ 522 + 1 ⁄ 722  + ... = 4722116521 π22 ⁄ 408727537373675520000.

 

12.  1 + 1 ⁄ 324 + 1 ⁄ 524 + 1 ⁄ 724  + ... = 56963745931 π24 ⁄ 48662619743783485440000.

 

13.  1 + 1 ⁄ 326 + 1 ⁄ 526 + 1 ⁄ 726  + ... = 14717667114151 π26 ⁄ 124089680346647887872000000.

 

14.  1 + 1 ⁄ 328 + 1 ⁄ 528 + 1 ⁄ 728  + ... = 2093660879252671 π28 ⁄ 174221911206693634572288000000.

 

15.  1 + 1 ⁄ 330 + 1 ⁄ 530 + 1 ⁄ 730  + ... = 86125672563201181 π30 ⁄ 70734095949917615636348928000000.

 

(12/29/2009)


The Values of Riemann Zeta Function for Positive Even Integers


References

[1] Sury, B. Bernoulli numbers and the riemann zeta function. Reson 8, 54–62 (2003). https://doi.org/10.1007/BF02834403.


In-Text or Website Citation
Tue N. Vu, The Values of Riemann Zeta Function for Positive Even Integers in Odd Form, from Series Math Study Resource.

Hyperlink: http://seriesmathstudy.com/sms/evenzetainoddform.